Featured Posts on Lesson Plan

Mathematics Lab Activity-12 Class XII

Mathematics Lab Activity-12 Class XII

Mathematics Laboratory Activities 12 on Vector Algebra for class XI Non-Medical students with complete observation tables strictly according to the CBSE syllabus.



Chapter - 10 

vector algebra

Activity - 12

Objective

To verify geometrically that :  equation

Material Required

Geometry box, cardboard, white paper, cutter, sketch pen, cello tape etc.

Procedure

1. Fix a white paper on the cardboard.
2. Draw a line segment OA (=6 cm, say) and let it represent equation .
3. Draw another line segment OB (= 4 cm, say) at an angle (say 60o) with OA. Let  equation .

Figure 12.1

4. Draw BC (= 3cm) making an angle (say 30o) with equation  . Let  equation 
5. Draw perpendicular BM, CL and BN  and complete the parallelograms OAPC, OAQB and BQPC.
6. equation, and let  equation 
7. Area of parallelogram OAQB = equation 
    Area of parallelogram BQPC =  
   Area of parallelogram OAPC  = equation 
             = (OA)(CL)
             = (OA)(LN + NC)
             = (OA)(BM + NC)
             = (OA)(BM) + (OA)(NC)
             = Area of parallelogram OAQB + Area of parallelogram BQPC
             =

Observations

In triangle BOM in figure 12.2
equation  
equation 
equation 
In figure 12.1 Area of Parallelogram OAQB = 6 ✕ 3.46 = 20.76 cm2
   
               Figure 12.2                                                    
                             Figure 12.3

In triangle BCN in figure 12.3
equation 
equation 
⇒ CN = 3/2 = 1.5 cm
In figure 12.1 
Area of Parallelogram BQPC = 6 ✕ 1.5 cm = 9 cm2

Now Area of Parallelogram OAQB + Area of Parallelogram BQPC 
          = 20.76 cm2 + 9 cm2 
          = 29.76 9 cm2    ........ (i)

In Figure 12.1 
Base of Parallelogram OAPC = 6 cm
Height  CL = BM + CN = 3.46 + 1.5 = 4.96 cm
Area of parallelogram OAPC = 6 ✕ 4.96 = 29.76 cm2 ...... (ii)

From (i) and (ii) we conclude that 
Area of parallelogram OAPC = Area of Parallelogram OAQB + Area of Parallelogram BQPC
In vector form this can be written as 
⇒ equation
equation

Result

Through this activity we prove that  equation

Applications

Through this activity, distributive property of vector multiplication over addition can be explained.

VIVA – VOICE

Q1. Is  equation  always ?
Ans. Yes.

Q2. Can we write equation
Ans. Yes

Q3. What does equation represents ?
Ans. It represents the area of parallelogram whose adjacent sides are equation and equation.

Q4. What does  equation  represent ?
Ans. It represents area of triangle whose sides are equation and equation.

Q5. What is condition for collinear vectors ?
Ans.  equation 

Q6. Define cross product of vectors equation and equation.
Ans. equation , where 0 ≤ θ ≤ π and equation is unit vector perpendicular to the plane containing equation and equation

THANKS FOR YOUR VISIT

PLEASE COMMENT BELOW


Comments

CLICK HERE FOR NEW POSTS

Popular Post on this Blog

Lesson Plan, Class IX (Ch-1) For Mathematics Teacher

Email Subscription

Followers